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ABSTRACT

Sparse regression using spectral libraries is nowadays a widely used
technique for hyperspectral data unmixing. Assuming that the poten-
tial endmembers are collected in a large database of spectra, sparse
unmixing finds the fractional abundances of a reduced set of con-
stituent materials by solving convex optimization problems which
target, at the same time, low data reconstruction errors. The large
amount of data, jointly with other limitations related to the internal
characteristics of the large spectral libraries (such as spectra similar-
ity), affect the performance of sparse unmixing algorithms in terms
of accuracy and running time. Recently, an efficient method based
on a multi-measurement vector (MMV) approach was proposed to
select, from a large library, suitable spectra for unmixing. Many
research efforts have also been devoted to data dimensionality re-
duction techniques, of which band selection is very popular. In this
work, we investigate the effects on the unmixing performance when
the two techniques are applied simultaneously. Our experiments
show that important improvements can be achieved, depending on
several factors, such as: data noise, number of endmembers present
in the dataset, number of spectra retained from the library, the order
of operations, accuracy of data subspace estimation.

Index Terms— MMV, sparse unmixing, band selection, spectral
libraries, data collaborativity

1. INTRODUCTION

In hyperspectral unmixing, the aim is to find the constituent ma-
terials of a scene, jointly with their corresponding spectral signa-
tures and fractional abundances (or areas occupied in each pixel by
the endmembers) [1, 2]. Most of pixels in hyperspectral scenes are
mixed, i.e., they contain more than one material. Sparse unmixing
[3, 4] was proposed as an alternative to the classical approach rely-
ing on endmember extraction, in order to overcome the lack of pure
pixels in the data. It assumes that the endmembers are present in a
large collection of pure spectra, called spectral library. Convex op-
timization problems are employed to infer which library members
are present in the scene (the endmembers) and what are their frac-
tional abundances in each pixel. It was shown that one of the lim-
itations acting on the performances of sparse unmixing is the size
of the spectral libraries, as an increasing number of library spectra
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leads to lower unmixing performances. To overcome this difficulty, a
method to select suitable spectra for unmixing was described in [5].
Based on the MMV approach ((see [6–8] and references therein)),
this method is able to retain a reduced set of endmembers to be used
in unmixing. Then, it applies a so-called collaborative sparse regres-
sion (CSR) to infer fractional abundances.

Apart from the fractional abundances inference, CSR has much
more applicability in the hyperspectral data processing. In [9], we
have shown that a complete hyperspectral unmixing chain (including
endmember extraction, band selection and inversion) can be com-
piled based on an unique CSR optimization function. However,
while it was shown that hyperspectral datacubes can be reconstructed
with high accuracy from a reduced set of spectral band using appro-
priate coefficients, the impact of the band selection on the unmixing
output was not investigated. This paper exploits a combination of
band selection and library spectra selection in order to analyze the
quality of the unmixing results in this scenario. Several questions
are to be taken into account:

• should band selection be performed before or after library
member selection?

• what is the influence of noise when band selection and library
pruning are simultaneously used in unmixing?

• how many spectral bands can be dropped from the dataset
without significantly degrading the unmixing quality?

• what other factors influence the unmixing performance?
The remainder of the paper is organized as follows. Section 2

presents the employed methodology. In Section 3, experiments with
simulated data are presented. Section 4 concludes the paper with
observations and conclusions on the presented work.

2. PROPOSED UNMIXING METHODOLOGY WITH BAND
SELECTION

Let Y and A be the observed dataset and the available spectral li-
brary, respectively. Let L denote the number of spectral bands, n
– the number of pixels in Y (each column contains one pixel) and
m – the number of library spectra stored in A. Under the linear
mixing model [2], the observed data Y can be expressed as a linear
combination of spectra from A as follows:

Y = AX+N, (1)

where X := [x1, . . . ,xn] is the abundance fraction matrix and
N := [n1, . . . ,nn] is the noise matrix. Because the abundance frac-
tions are nonnegative and sum to one in each pixel, the constraints



X ≥ 0, to be understood in the component-wise sense, and 1T
mxi =

1 (1m stands for a column vector with m ones; i = 1, . . . , n) called
abundance non-negativity constraint (ANC) and abundance sum-to-
one constraint (ASC), respectively, are often imposed into the model
(1). In this work, we disregard ASC and only consider ANC.

2.1. Band selection using collaborative sparse regression (CSR)

Given that in a given hyperspectral dataset the number of active ma-
terials is usually small compared with the number of columns of A
[2], then the matrix of fractional abundances X is row-wise sparse,
i.e it has many zero rows. A plethora of well-established methods
are available in the literature to perform unmixing taking sparsity
into account, considering per–pixel processing, spatial regulariza-
tion, structured sparsity or data collaborativity, among others. In this
work, we use the Collaborative Sparse Unmixing via variable Split-
ting and Augmented Lagrangian (CSUnSAL) algorithm [10], which
takes into account the fact that all pixels share a common set of pix-
els, thus they should collaborate together in inferring an unmixing
solution. CLSUnSAL solves the following collaborative sparse re-
gression (CSR) optimization problem:

min
X

∥AX−Y∥2F + λ

m∑
k=1

∥xk∥2 (2)

subject to: X ≥ 0.

where xk denotes the k-th line of X and λ is a regularization pa-
rameter which weights the two terms of the objective function. The
convex term

∑m
k=1 ∥x

k∥2 is the so-called ℓ2,1 mixed norm which
promotes sparsity among the rows of X, i.e., it promotes solutions
of (1) with small number of nonzero lines of X. In all cases pre-
sented in this work, the reported unmixing performances correspond
to the optimal parameter λ, out of the following values: 0 (no spar-
sity imposed; equivalent to the classical non-negative least squares
solution), 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6.

Note that CSR, solved by CLSUnSAL, apart from the fractional
abundances retrieval (the so-called inversion step in unmixing), can
serve as an endmember extraction algorithm by simply replacing the
library A with Y in (2); also, a band selection algorithm is obtained
if A is replaced with YT (the transpose of Y) [9]. We will exploit
this possibility in our experiments, in which the number of selected
spectral bands will be varied.

2.2. Library pruning using an MMV approach

We defined, in the previous subsection, a way to perform band selec-
tion. We now shortly describe the methodology to perform library
pruning.

In our previous work [5], the library pruning was established as
part of a complete unmixing algorithm called MUSIC-CSR. Here,
we use the same approach, based on the MUltiple SIgnal Classifi-
cation (MUSIC) algorithm [11, 12], which consists in the follow-
ing steps: 1) Signal Subspace Identification: Infers the subspace in
which the hyperspectral data Y lives using the HySime algorithm
[13]; 2) Projection errors: Computes the Euclidean distance from
each member of the library to the estimated subspace; 3) Active set
detection: Sorts the normalized projection errors by increasing order
and retain the indexes of first kf in the set of m library members.

The logic behind these operations is the following: if one library
member is a data endmember, it should lie in the data subspace, such
that the distance to this subspace is ideally zero. Otherwise, it should

be placed at a non-zero distance from the data subspace. In real ap-
plications, due to noise and non-linearities, it is unlikely to obtain
distances equal to zero. However, the closest library members to the
inferred subspace should still be endmembers with a higher probabil-
ity than the others. In this work, we run our experiments for different
sets of retained spectra: kf = k, kf = k + 10, kf = k + 20 and
kf = k + 30, where k is the true number of endmembers in the
considered dataset.

The MUSIC-CSR algorithm uses the retained library members
as input to CLSUnSAL. Here, the same concept is used. The differ-
ence between the analysis performed in [5] and this work consists
in the fact that, here, a band selection is performed such that not all
L spectral bands are used in unmixing. The goal is to identify the
advantages and weaknesses that such a band reduction might intro-
duce into the unmixing accuracy. In all cases, the unmixing per-
formance is measured by the so-called signal-to-reconstruction er-
ror: SRE ≡ E[∥x∥22]/E[∥x− x̂∥22], expressed in dB: SRE(dB) ≡
10 log10(SRE), where x is the true unmixing solution and x̂ is the
estimated one.

3. EXPERIMENTAL RESULTS

The proposed methodology was tested on various datacubes contain-
ing 4000 pixels, with the number of endmembers kf being 4, 8 or 12.
The data sets were generated using spectra from a library A contain-
ing 240 spectral signatures with 224 bands from the USGS spectral
library available online1. The endmembers were randomly selected
and all datacubes were contaminated with i.i.d. Gaussian noise for
three signal-to-noise (SNR) levels: 20, 30 and 40dB. It should be
noted that most hyperspectral sensors acquire data with SNR larger
than 30dB, which makes the last two cases more appropriate for a
real case analysis.

The band selection is performed using CLSUnSAL with YT

as input matrix (as explained in Subsection 2.1). One example of
coefficients matrix is shown in Fig. 1.a). In this particular case,
the parameter λ was set to a high value (λ = 30). Such a matrix
should give a response to the question: what are the most significant
spectral bands? or, in other words: what are the spectral bands which
best explain the observed data? The informative bands should have
large coefficients, while the non-informative ones should have low
coefficients. The bands with the lowest contribution to the matrix of
coefficients (thus, to the observed data) can be dropped. In this work,
the number of bands retained in the experiments varies between 50
and 200, with an increment of 30. Experiments with the full data
(224 bands) were also performed for comparison purposes.

In Fig. 1.a), note the striped pattern of the coefficients. Two sets
of bands are highlighted to make a distinction between informative
and non-informative bands. While the most discriminative bands
spread their non-zero coefficients horizontally (they explain other
bands following a linear model), some of the others are vanishing
(their cofficients ar almost zero). In Fig. 1.b), we plot the sum of
coefficients for all bands. These coefficients are then arranged in
increasing order and the bands corresponding to the highest values
are selected.

The first issue to analyze is the order of the operations. In
Fig. 2, we plot the SRE(dB) values for the same dataset (k = 8,
SNR=30dB) in two situations – the band selection is performed be-
fore and after library pruning, respectively. Note that the SRE(dB)
values in the latter case are clearly higher and more stable, although
the differences are minor if the number of retained bands is large

1See: http://speclab.cr.usgs.gov/spectral.lib06



a) Matrix of coefficients

b) Contribution of individual bands to the data

Fig. 1. The use of matrix of coefficients for band selection.

and the number of retained members is small. This behavior is com-
mon to all the tested datasets, thus we can conclude that the band
selection should always be performed after the library pruning step.
All the following results are reported folowing this rule.

Another issue to be analyzed is the unmixing performance w.r.t.
the data noise. In Fig. 3, we compare the unmixing performances
for the three noise levels for the dataset containing k = 4 endmem-
bers. In this plot, one horizontal axis shows the number of retained
library members, while the other marks the number of spectral bands
retained.

It is easy to notice, from the plots displayed so far, that higher
performances can be achieved when a minimal number of library
members are retained. Ideally, the k library members with lowest
projection errors should be the endmembers themselves. However,
this is not always the case. In high noise, or when the number of
endmembers is high, retaining form the library a number of mem-
bers equal to the number of endmembers can be a risky approach.
This might be due to several reasons: nonlinearity of the data, incor-
rect estimation of the number of endmembers, incorrect inference of
the data subspace etc. In Fig. 4, we illustrate this drawback for two
representative cases: high data noise (SNR=20dB and k = 4; see
Fig. 4.a) and high number of endmembers (SNR=30dB and k = 12;
see Fig. 4.b). For illustration purposes, the SRE(dB) obtained with
the full library is also displayed, thus the y-axis should not be taken
into account in this case. Note that when kf = k, even if a large
number of bands is retained, the unmixing performance degrades,
compared to the cases when kf > k. This indicates that at least
one endmember was not correctly identified. However, a slight im-
provement over the performance obtained with the full library is still
visible and, fortunately, the case illustrated in Fig. 4.a (very high
noise) is unlikely to happen in real scenarios.

The last open question is how low can be the number of selected
bands such that the unmixing performance stays reasonable. We take
the performance level SRE(dB)=5 as a reference to indicate if a so-

(a) Unmixing with band selection before library pruning

(b) Unmixing with band selection after library pruning

Fig. 2. Influence of the order of operations on the unmixing results.

Fig. 3. Noise influence on the unmixing with band selection (k = 4).

lution is useful or not [4]. It should be noted that the unmixing using
the complete full library reached this performance only in very ad-
vantageous conditions: low number of endmembers (k = 4) and low
noise (SNR=40dB). For the very high noise scenario (SNR=20dB),
none of the tested combinations reached the targeted performance,
except for the situaton in which the number of endmembers is k = 4,
the number of retained library spectra is kf = k = 4 and the number
of retained bands is 50. It means that, even in this scenario, useful
solutions can be obtained when a low number of spectral bands is
selected. However, even if the unmixing with band selection and li-
brary pruning improved the unmixing compared to the experiments
with full library, this situation should still be treated with caution,
due to the drawbacks mentioned before (the probability to select an
incorrect set of endmembers is higher).

Table 3 shows the minimum number of bands needed to reach
useful unmixing performance for all tested unmixing settings when
SNR=30dB and SNR=40dB. The sign † indicates that the unmix-
ing did not reach the targeted performance, no matter the number of
retained bands. Note that, under mild assumptions, high unmixing
performances can be achieved by band selection and library pruning
while keeping a very low number of bands (50 bands represent less



(a) High data noise (SNR=20dB)

(b) Large number of constituent endmembers (SNR=30dB)

Fig. 4. Risks affecting the performance of sparse unmixing with
band selection.

than 23% of the original datacube).

Table 1. Minimum number of retained bands to achieve unmixing
performance higher than SRE(dB)=5

SNR=30dB SNR=40dB
k 4 8 12 4 8 12
kf = k 50 † † 50 † 50
kf = k + 10 50 50 † 50 50 110
kf = k + 20 50 50 † 50 50 110
kf = k + 30 50 50 † 50 50 170
kf = m † † † 110 † †

4. CONCLUSIONS

In this paper, we investigated the performance of sparse hyperspec-
tral unmixing when band selection and library pruning are performed
simultaneously as part of the unmixing procedure. Our experiments
show that, no matter the characteristics of the data, improvements
are achieved compared to the results obtained using the complete
full spectral library as input. It was demonstrated that band selection
should be performed after library pruning for stable results. As ex-
pected, the data noise influences the unmixing quality: higher noise
implies lower performance. On another hand, lower noise leads to
larger improvements when the anlyzed strategy is employed. A very
interesting observation is that caution should be taken during the li-
brary pruning when the data is affected by high level of noise and/or
the number of endmembers is high. In these cases, the number of
retained library spectra should be larger than the number of end-
members in the image, as several factors might influence the correct
identification of the endmembers: data nonlinearities, errors in data
subspace estimation, errors in estimating the number of endmem-

bers. It was shown that useful unmixing results can be obtained in
regular datasets (e.g., the noise is not very high and the number of
endmembers not very large, which is a situation often encountered
in hyperspectral data) even for a very low number of spectral bands
retained (a number of bands lower than than 23% of the number of
original bands was tested in our experiments).
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